Three New Compounds from the Aerial Parts of Caragana sinica

by Shuguang Wang, Dayou Ma, and Changqi Hu*

Department of Chemistry of Natural Drugs, School of Pharmacy, Fudan University, Shanghai 200032, People's Republic of China (phone: + 86-021-54237564; e-mail: shuguang3@shmu.edu.cn)

Two new stilbenoids, carasiphenol C (1) and Carasiphenol D (2), and one new dihydroaurone, carasinaurone (3), were isolated from the aerial parts of *Caragana sinica*, along with three known substances. Their structures were elucidated on the basis of spectroscopic methods and X-ray-diffraction analysis. Compound 2 showed significant biological activity against *Pyricularia oryzae*.

Introduction. – *Caragana sinica* (BUCHOLZ.) REHD. (Leguminosae) is widely distributed in China. Its dried root named 'Jinquegen' [1] has been used as a folk medicine. In the previous papers, we reported that the AcOEt extract of the root of *Caragana sinica* showed the effects of stimulating the proliferation, differentiation, and maturation of cultured osteoblasts *in vitro* [2]. In our lab, many oligostilbenes, some of which exhibited estrogenic activity, were isolated from this plant [3]. The aerial parts of the plant have scarcely been used and were always considered a waste product. However, our recent studies on the aerial parts of the plant showed that it can be a rich source of oligostilbenes, carasiphenol C (1) and carasiphenol D (2), and a new dihydroaurone, carasinaurone (3), together with three known compounds, (–)-ampelosin F, caraphenol A [4], and carasinols A [5], from the aerial parts of *Caragana sinica*. Carasiphenol D (2) showed significant activity against the mycelial growth of *Pyricularia oryzae*. The minimum inhibitory concentration (*MIC*) of 2 was 0.017 μ M.

Results and Discussion. – Carasiphenol C (1) was isolated as a yellowish, amorphous, optically active powder. Its molecular formula, $C_{42}H_{32}O_9$, was deduced from the HR-ESI-MS (m/z 681.2130 ($[M - H]^+$, $C_{42}H_{33}O_9^+$)). The structure of 2 was established by the ¹H- and ¹³C-NMR spectra (*Tables 1* and 2) and their comparison with those of ampelopsin H [6], a tetramer of resveratrol, and confirmed by HMBC and NOE data (*Fig. 1*).

The ¹H-NMR spectrum of **1** exhibited signals for three 4-hydroxy-substituted phenyl moieties at δ 7.22 (*d*, J = 8.5 Hz, 2 H), 6.86 (*d*, J = 8.5 Hz, 2 H), 6.98 (*d*, J = 8.3 Hz, 2 H), 6.70 (*d*, J = 8.3 Hz, 2 H), 6.44 (*d*, J = 8.6 Hz, 2 H) and 6.35 (*d*, J = 8.3 Hz, 2 H); for two 3,5-dihydroxy-substituted phenyl moieties at δ 6.25 (*d*, J = 2.3 Hz, 2 H), 6.31 (*t*, J = 2.1 Hz, 1 H), 6.61 (*d*, J = 1.3 Hz, 1 H), and 6.17 (*d*, J = 1.3 Hz, 1 H), and for two aliphatic protons of a dihydrobenzofuran moiety at δ 5.25 (J = 7.5 Hz, 1 H) and 4.82 (J = 7.5 Hz, 1 H). The ¹³C-NMR spectrum exhibited the signals of six aliphatic and 36 aromatic C-atoms. All these data suggested that **1** could be a resveratrol trimer.¹) ¹H- and ¹³C-NMR features of **1** were similar to those of a segment of ampelopsin H [6], except that ampelopsin H was a tetramer. The planar structure of **1** was determined by a HMBC

^{© 2005} Verlag Helvetica Chimica Acta AG, Zürich

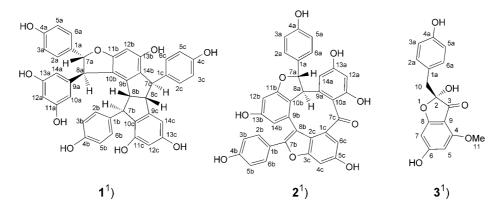


Table 1. ¹*H*-*NMR Data* ((D₆)Acetone, 500 MHz) for $1-3^{1}$). δ in ppm, *J* in Hz.

	1	2		3
H-C(2), H-C(6a)	7.22 $(d, J = 8.5)$	7.11 $(d, J = 8.2)$	H-C(5)	5.91 $(d, J = 1.3)$
H-C(3a), H-C(5a)	6.86 (d, J = 8.5)	6.72 (d, J = 8.6)	H-C(7)	5.97 $(d, J = 1.3)$
H-C(7a)	5.25 (d, J = 7.5)	5.98(s)	H - C(10)	3.01 (s)
H-C(8a)	4.82 (d, J = 7.5)	4.81 (s)	H - C(11)	3.74(s)
H-C(10a)	6.25 (d, J = 2.3)		H-C(2b)	7.02 $(d, J = 8.3)$
H-C(12a)	6.31 $(d, J = 2.1)$	6.79 (d, J = 1.9)	H-C(6b)	7.02 $(d, J = 8.3)$
H-C(14a)	6.25 (d, J = 2.3)	6.85 (d, J = 1.9)	H-C(3b)	6.62 (d, J = 8.5)
H-C(2b), H-C(6b)	$6.44 \ (d, J = 8.6)$	7.57 (d, J = 8.7)	H-C(5b)	6.62 (d, J = 8.5)
H-C(3b), H-C(5b)	6.35 (d, J = 8.4)	6.83 (d, J = 8.7)		
H-C(7b)	4.51 (br. s)			
H-C(8b)	3.66 (d, J = 5.9)			
H-C(12b)	6.25(s)	6.50 (d, J = 2.1)		
H-C(14b)		6.25 (d, J = 2.1)		
H-C(2c)	6.98 (d, J = 8.3)			
H-C(6c)	6.98 (d, J = 8.3)	6.66 (d, J = 2.1)		
H-C(4c)		6.44 (d, J = 2.1)		
H-C(3c)	6.70 (d, J = 8.3)			
H-C(5c)	6.70 (d, J = 8.3)			
H-C(7c)	4.61 (br. s)			
H-C(8c)	3.61 (d, J = 5.9)			
H-C(12c)	6.17 (d, J = 1.3)			
H-C(14c)	6.61 $(d, J = 1.3)$			

experiment (*Fig. 1, a*). Significant correlations H-C(8b)/C(7c) and C(9c), H-C(8c)/C(9b) and C(7b), H-C(7c)/C(9b) and C(8b) indicated the presence of a five-membered ring (denoted by C₁). Significant correlations H-C(7b)/C(9c), H-C(7c)/C(8c), H-C(8b)/C(9c), H-C(8b)/C(10c), and H-C(8c)/C(7b)indicated the presence of another five-membered ring (noted by C₂), and the two rings C₁ and C₂ were connected at C(8b) and C(8c). This kind of connection is the same as that observed in pallidol [7]. Significant correlations H-C(8a)/C(9b) and C(11b) indicated that C(8a) was connected to C(10b). All above data confirmed the planar structure of **1** as shown in *Fig. 1,a*. The NOEs H-C(8a)/H-C(2a,6a) and H-C(7a)/H-C(10a,14a) indicated a *trans* orientation of H-C(7a) and H-C(8a) (*Fig. 1,b*). Similarly, the NOEs

¹⁾ Arbitrary numbering; for systematic names, see Exper. Part.

						-	
	1	2		1	2		3
C(1a)	133.5	133.4	C(10b)	116.6	124.3		
C(2a), C(6a)	129.6	129.0	C(11b)	163.1	156.9	C(2)	108.1
C(3a), C(5a)	116.5	116.4	C(12b)	97.1	103.5	C(3)	195.3
C(4a)	158.7	158.9	C(13b)	155.6	160.5	C(4)	162.6
C(7a)	95.1	89.3	C(14b)	126.1	109.5	C(5)	95.1
C(8a)	57.4	48.2	C(1c)	138.0	139.1	C(6)	168.7
C(9a)	145.8	139.6	C(2c)	129.4	125.3	C(7)	92.3
C(10a)	107.8	120.3	C(6c)	129.4	107.6	C(8)	173.4
C(11a)	160.3	156.1	C(3c)	116.2	159.9	C(9)	105.6
C(12a)	102.6	97.3	C(5c)	116.2	159.7	C(10)	47.2
C(13a)	160.3	157.3	C(4c)	156.2	102.3	C(11)	58.8
C(14a)	107.8	109.5	C(7c)	53.7	199.7	C(1a)	126.5
C(1b)	137.0	123.4	C(8c)	60.4		C(2a)	132.7
C(2b), (6b)	129.4	129.3	C(9b)	150.7		C(6a)	132.7
C(3b), (5b)	115.6	116.3	C(10c)	123.3		C(3a)	116.4
C(4b)	156.3	158.9	C(11c)	159.6		C(5a)	116.4
C(7b)	50.4	150.8	C(12c)	102.8		C(4a)	157.8
C(8b)	60.3	114.9	C(13c)	155.6			
C(9b)	145.4	135.3	C(14c)	103.6			

Table 2. ¹³C-NMR Data ((D_6)Acetone, 125 MHz) for $1-3^1$). δ in ppm.

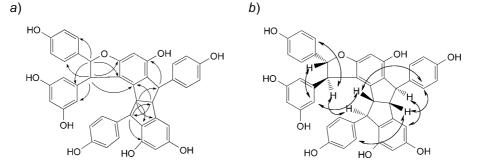


Fig. 1. Significant a) HMBC and b) NOE correlations for carasiphenol C (1)

H-C(8c)/H-C(2c,6c) and H-C(7c)/H-C(14c) were in accord with a *trans* orientation of H-C(7c) and H-C(8c). Also the NOE interactions H-C(8a)/H-C(7b), H-(8b)/H-C(10a,14a) and H-C(8b)/H-C(2b,6b) suggested that H-C(8c) and H-C(7b), as well as H-C(7b) and H-C(8b) would have a *trans* orientation. The NOE interactions H-C(8b)/H-C(2c,6c), H-C(2c,6c) and H-C(8c)/H-C(2b,6b) determined the configuration of H-C(8c) and H-C(8b) to be *cis*; H-C(7b) and H-C(8a) were determined to be *cis*.

Carasiphenol D (2) was isolated as a yellowish amorphous powder. Its molecular formula, $C_{35}H_{22}O_9$, was established by HR-ESI-MS (m/z 587.1318 ($[M + H]^+$, $C_{35}H_{23}O_9^+$)). The UV spectrum (λ_{max} 326 nm) revealed the presence of a strongly conjugated system in the structure. The structure of 2 was deduced from its spectral data (*Tables 1* and 2), their comparison with those of caraphenol A [4] (*Table 3* and *Fig. 2*), a resveratrol trimer which has also been isolated from the roots of this plant, and confirmed by HMBC and NOESY data (*Fig. 3*).

	Caraphenol A ¹)		Carasiphenol D^1) (2)	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$
C(1a)		133.5		133.4
H-C(2a), H-C(6a)	7.22 (d, J = 8.5)	129.0	7.11 $(d, J = 8.2)$	129.0
H-C(3a), H-C(5a)	6.86 (d, J = 8.5)	116.5	6.72 (d, J = 8.6)	116.4
C(4a)		158.7		158.9
H-C(7a)	5.25 (d, J = 7.5)	95.1	5.98(s)	89.3
H-C(8a)	4.82(d, J = 7.5)	57.4	4.81 (s)	48.2
C(9a)		145.8		139.6
C(10a)		107.8		120.3
C(11a)		160.3		156.1
H-C(12a)	6.31 (d, J = 2.1)	102.6	6.79 (d, J = 1.9)	97.0
C(13a)		160.3		157.3
H-C(14a)	6.25 (d, J = 2.3)	107.8	6.85 $(d, J = 1.9)$	109.5
C(1b)		122.7		123.4
H-C(2b), H-C(6b)	7.26 $(d, J = 8.7)$	129.4	7.57 $(d, J = 8.7)$	129.3
H-C(3b), H-C(5b)	6.70 (d, J = 8.7)	116.2	6.83(d, J = 8.7)	116.3
C(4b)		156.3		158.9
C(7b)		149.4		150.8
C(8b)		114.5		114.9
C(9b)		135.3		135.3
C(10b)		118.9		124.3
C(11b)		163.5		156.9
H-C(12b)	6.52 (d, J = 2.1)	98.3	6.50 (d, J = 2.1)	103.5
C(13b)		160.7		160.5
H-C(14b)	6.32 (d, J = 2.1)	109.6	6.25 (d, J = 2.1)	109.5
C(1c)		139.7		139.1
C(2c)		120.5		125.3
H-C(6c)	6.94 (d, J = 8.3)	126.1	6.66 $(d, J = 2.1)$	107.6
C(3c)		155.2		159.9
C(5c)		157.2		159.7
H-C(4c)	6.81 $(d, J = 1.8)$	96.4	6.44 (d, J = 2.1)	102.3
H-C(7c) or $C(7c)$	4.87 (br. s)	45.7		199.7
H-C(8c)	5.92 (br. s)	87.9		
C(9c)		132.5		
H-C(10c)	7.05 (d, J = 8.6)	128.3		
H-C(11c)	6.71 (d, J = 8.6)	115.9		
C(12c)		158.2		
H - C(13c)	6.71 (d, J = 8.6)	115.9		
H-C(14c)	7.05 (d, J = 8.6)	128.3		

Table 3. NMR Data ((D₆)Acetone) of Caraphenol A and Carasiphenol D. δ in ppm.

Carasiphenol D (2) was soluble in acetone, AcOEt, MeOH, and dimethylsulfoxide but was insoluble in distilled H₂O. Carasiphenol (2) inhibited the mycelial growth of *P. oryzae* by curling and swelling effect (*MIC* = 0.017 μ M), indicating that 2 may act *via* a mechanism similar to the antifungal mechanisms of rhizoxin, which is a commercial fungicidal agent [8]. Therefore, 2 isolated from *C. sinica* may prove to be a valuable antifungal agent against rice-blast disease.

The ¹H-NMR spectrum of **2** exhibited signals for two 4-hydroxy-substituted phenyl groups at δ 7.57 (d, J = 8.7 Hz, 2 H), 6.83 (d, J = 8.7 Hz, 2 H), and 7.11 (d, J = 8.2 Hz, 2 H), and 6.72 (d, J = 8.6 Hz, 2 H), for three 3,5-dioxy-1,2-phenylene moieties at δ 6.50 (d, J = 2.1 Hz, 1 H), 6.25 (d, J = 2.1 Hz, 1 H), 6.44 (d, J = 2.1 Hz, 1 H),

Fig. 2. Comparison of carasiphenol D (2) and caraphenol A

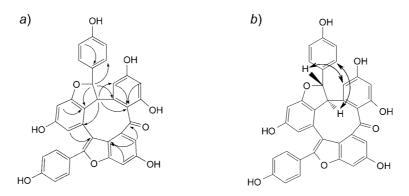
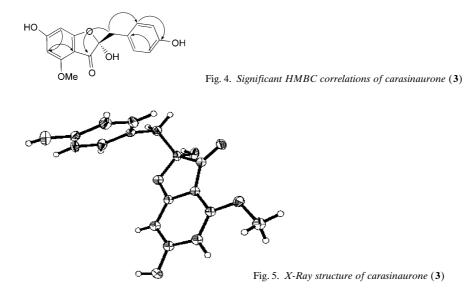



Fig. 3. Significant a) HMBC and b) NOE correlations for carasiphenol D (2)

6.66 (d, J = 2.1 Hz, 1 H), 6.79 (d, J = 1.9 Hz, 1 H), and 6.85 (d, J = 1.9 Hz, 1 H), and for two aliphatic protons of a dihydrobenzofuran moiety at δ 5.98 (br. s, 1 H) and 4.81 (br. s, 1 H). The ¹³ C-NMR spectrum exhibited the signals of two aliphatic and 32 aromatic C-atoms and an isolated carbonyl group (δ 199.7). All these data suggested that **2** could be a stilbene compound. ¹H- and ¹³ C-NMR features of **2** were similar to those of a segment of caraphenol A [4] (*Table 3*), a resveratrol trimer (*Fig.2*).

In the HMBC spectrum of **2**, significant correlations H-C(8a)/C(10a) and C(9b), H-C(14b)/C(8b), H-C(6c)/C(2c) and C(7c), and H-C(14a)/C(10a) indicated the presence of a nine-membered ring (*Fig. 3, a*). The relative configuration of **2** was established on the basis of the ¹H-NMR and NOESY data. In the ¹H-NMR spectrum, the coupling constant J(7a,8a) of *ca.* 0 Hz suggested that the bond angle between H-C(7a) and H-C(8a) is nearly 90°. According to a molecular model of **2**, *trans* orientation of H-C(7a) and H-C(8a) was deduced. Together with the NOEs interactions H-C(8a)/H-C(2a,6a) and H-C(7a)/H-C(14a) (*Fig. 3,b*), which also indicated a *trans* orientation for H-C(7a) and H-C(7a) and H-C(7a) and H-C(7a) and H-C(7a).

Carasinaurone (3) was isolated as pale yellow cubic crystals. Its molecular formula $C_{16}H_{14}O_6$ was established by HR-ESI-MS (m/z 341.0428 ($[M + K]^+$, $C_{16}H_{14}KO_6^+$)). The structure of **3** was established by spectroscopic means (*Tables 1* and 2, and *Fig. 4*) and comparison with the data of dihydroaurone [9], which has a planar structure, and its configuration was deduced from the X-ray crystallographic analysis (*Fig. 5*).

The ¹H-NMR spectrum exhibited signals for a 4-hydroxy-substituted phenyl group at δ 7.02 (d, J = 8.3 Hz, 2 H) and 6.62 (d, J = 8.5 Hz, 2 H), for a 5-hydroxy-3-methoxy-1,2-phenylene group at δ 5.91 (d, J = 1.3 Hz, 1 H) and 5.97 (J = 1.3 Hz, 1 H), for two CH₂ protons at 3.01 (s), and for three Me protons at δ 3.74 (s). In the HMBC spectrum (*Fig.* 4), significant correlations H-C(10)/C(2b,6b), C(3), and C (2), H-C(5)/C(7) and C(9), and H-C(7)/C(5) and C(9) were observed, all above data indicating that **3** could be a dihydroaurone derivative [9] with a planar structure.

X-Ray crystallographic analysis of carasinaurone $(3)^{1})^{2}$): The compound crystallized in the monoclinic space group P_{21}/C with molecules of composition $C_{16}H_{14}O_6$ (Z = 4); accurate cell constants are: a = 10.2922 (14), b = 9.2173 (14), c = 14.173 (2) Å; $\beta = 90.497(3)^{\circ}$; V = 1344.5 (3) Å³. All reflections were collected on the *CCD* area detector diffractometer, MoK_a radiation (λ 0.71073 Å); maximum 2 θ value 25.10°; independent reflections 2387, observed reflections 1797 ($|F|^2 \ge 2\delta |F|^2$) F(000) = 632. The structure was resolved by direct methods (SHELXS-97), expanded by using SHELXS-97/2, and refined by full-matrix least-squares calculations. H-Atoms were fixed at calculated positions. The final indices were $R_f = 0.0436$, $R_w = 0.1099$.

This work was supported by the National Natural Science Foundation of China (Grant No. 30270155).

Experimental Part

General. M.p.: Kofler micro melting-point apparatus; uncorrected. Optical rotations: Jasco P-1020 polarimeter; MeOH solns. UV Spectra: Shimadzu UV-240 spectrophotometer λ_{max} (log ε) in nm. IR Spectra: Perkin-Elmer 783 IR spectrophotometer, KBr pellets; in cm⁻¹. NMR Spectra: Bruker DRX-400 spectrometer; δ in ppm rel. to SiMe₄ as internal standard, J in Hz. HR-ESI-MS: AB-QSTAR-Pulsar mass spectrometer; in m/z (rel. %).

Plant Material. The aerial parts of *C. sinica* (BUCHOLZ.) REHD. were collected in September, 2001, from Zhongxiang County, Hubei Province, China, and identified by Professor *Zhi-Jian Feng*, Department of Biology, Shanghai East China Normal University. A Voucher specimen (CS-HZ-1106) is deposited in the Herbarium of Materia Medica, Department of Chemistry of Natural Drugs, School of Pharmacy, Fudan University, People's Republic of China.

2320

²) CCDC 245803 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif from the Cambridge Crystallographic Data Centre.

Extraction and Isolation. The air-dried and powdered aerial parts of *Caragana sinica* (BUCHOLZ.) REHD. (70 kg) were macerated with 95% EtOH at r.t. The solvent was evaporated to yield a residue (5 kg), which was successively partitioned between H₂O and petroleum ether and AcOEt. The AcOEt extract (230 g) was subjected to CC Silica gel (1.5 kg, 200–300 mesh), CHCl₃/MeOH (10:1, 9:1, 4:1, 7:3 and 3:2), MeOH): *Fractions A – F. Fr. C* was subjected to CC (silica gel (300–400 mesh), petroleum ether/Et₂O 3:2): caraphenol A (47 mg), (–)-ampelosin F (6.0 g), and carasinaurone (**3**; 93 mg). The latter was purified by crystallization from MeOH/H₂O. From *Fr. D*, carasiphenol D (**2**; 18 mg) and carasinol A (37 mg) were obtained by CC (silica gel, petroleum ether/Et₂O 2:3; and then *Sephadex LH-20* CHCl₃/MeOH 1:3). Carasiphenol C (**1**; 10 mg) was obtained from *Fr. E* by CC (silica gel, petroleum ether/Et₂O 2:3; then reversed-phase silica gel (*RP-18*), MeOH/H₂O 2:3).

Carasiphenol C (= 1-(3,5-*Dihydroxyphenyl*)-*1*,2,6,6a,11,11a-hexahydro-2,6,11-tri(4-hydroxyphenyl)indeno[1',2':2,3]indeno[*S*,A-b]furan-5,8,10-triol; **1**): Brown amorphous powder. M.p. 216–218°, $[a]_{10}^{20} = +36.8$ (c = 0.281, MeOH). UV (MeOH): 278 (3.2). IR (KBr): 3356, 1605, 1532, 1460, 1320, 1205, 1098, 1016, 883. ¹Hand ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS: 681.2130 ($[M + H]^+$, C₄₂H₃₃O⁺; calc. 681.2125).

Carasiphenol D (= 5,5a-Dihydro-2,7,9,12,-tetrahydroxy-5,15-bis(4-hydroxyphenyl)-10H-benzo[8,9]cyclonona[1,2,3-c,d:4,5,6-c',d']bisbenzofuran-10-one; **2**): Pale yellow amorphous powder. M.p. > 240°. $[\alpha]_{25}^{25}$ = + 47.9 (c = 0.4 MeOH). UV (MeOH): 326 (3.5). IR (KBr): 3330, 1710, 1640, 1548, 1466, 1280, 1203, 1129, 1057, 825. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS: 587.1339 ($[M + H]^+$, C₃₅H₂₃O₉⁺; calc. 587.1342).

Carasinaurone (= 2-(4-Hydroxybenzyl)-2,6-dihydroxy-4-methoxybenzofuran-3(2H)-one; 3): Pale yellow cubic crystals. M.p. > 240°, $[a]_{D}^{25} = +38.9$ (c = 0.356, MeOH), UV (MeOH): 272 (1.7). IR (KBr): 3373, 1680, 1598, 1516, 1430, 1357, 1206, 1120, 834, 790. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS: 341.0427 ($[M + K]^+$, $C_{16}H_{14}KO_6^+$; calc. 341.0427).

REFERENCES

- Jiangsu New Medical College, 'The Dictionary of Traditional Medicine', Shanghai Scientific & Technical Press, Shanghai, 1975, p. 1402.
- [2] W. F. Jin, W. J. Zhu, H. F. Wang, H. F. Luo, C. Q. Hu, Osteoporos 2001, 7.
- [3] H. F. Luo, L. P. Zhang, C. Q. Hu, J. Chin. Pharm. Sci. 2000, 9, 165.
- [4] H. F. Luo, L. P. Zhang, C. Q. Hu, Tetrahedron 2001, 57, 4849.
- [5] D. Y. Ma, H. F. Luo, C. Q. Hu, Chin. J. Chem. 2003, 22, 207.
- [6] Y. Oshiteru, Y. Ueno, Phytochemistry 1993, 33, 181.
- [7] M. Khan, S. Nabi, S. Parkash, Phytochemistry 1986, 25, 1946.
- [8] H. Kobayashi, M. Namikoshi, Y. T. Yokochi, J. Antibiot. 1996, 49, 873.
- [9] B. Brady, M. G. Osullivan, W. J. Chem. Soc. 1989, 9, 1552.

Received August 4, 2004